Percent account

G: P = **100:p** What is what in proportions?

G - is a principal, (whole), what is "at the beginning" and it always refers 100%.

P - is part of the principal (whole), what is "at the end" and it applies to p%.

Of course, sometimes P can be greater than G.

p – is always a percentage

In the task, we first determine what is specified: G, P or p. This data we put in G: P = 100:p and find unknown.

Examples:

1) Thirty percent of a length is 42. How long the entire length is?

G: P = 100: p G: 42 = 100: 30 $30G = 42 \cdot 100$ $G = \frac{42 \cdot 100}{30}$ G = 140

2) Price of shoe is 2.700\$? How much will it be after the price decrease of 15%?

G: P = 100: p 2.700: P = 100: 85 $P \cdot 100 = 2.700 \cdot 85$ $P = \frac{2.700 \cdot 85}{100}$ P = 2.295Discount 15%, p = 100-15 = 85%

3) Price of book is cut for 10% and 20%, and now amounts to 288 \$. What the price was before the first decrease?

First, you can find the cost of books before second decrease. (back)

G: P = 100: p G: 288 = 100: 80 $80 \cdot G = 288 \cdot 100$ $G = \frac{288 \cdot 100}{80}$ G = 360

Now require home price:

G: P = 100: p G: 360 = 100: 90 $90 \cdot G = 360 \cdot 100$ $G = \frac{360 \cdot 100}{90}$ G = 400

4) With 6% of the earnings of goods sold for 1 272 000 \$. What is the cost of goods?

G: P = 100: p G: 1.272.000 = 100: 106 $G \cdot 106 = 1.272.000 \cdot 100$ $G = \frac{127.200.000}{106}$ G = 1.200.000

5) Award worker per hour of 6500\$ grow to 7020\$. How much is it in percentage?

$$G: P = 100: p P = 7.020-6.500 \\ P = 520 = 100: p P = 520 \\ p = \frac{520 \cdot 100}{6.500} \\ p = 8\%$$

6) At the written exercises were given three tasks.

12% of students not solve a single task, 32% of students solve one or two tasks, while 14 students solve all three tasks. How much is the total student work training?

x- number of students

12%x + 32%x + 14 = 100%x $\frac{12}{100}x + \frac{32}{100}x + 14 = x ; 100\% = \frac{100}{100} = 1$ 12x + 32x + 1400 = 100x 12x + 32x - 100x = -1400 -56x = -1400 $x = \frac{-1.400}{-56}$ x = 25

7) Only brought down tree was difficult to contain 2.25 tons and 64% is water. After a week treecontained 46% water. How much has changed weight tree for the week?

fallen tree

2,25 tons

Dry tree

First, we calculate how much is in the 2.25 tons of dry matter that does not change!

G: P = 100 : p 2,25 : P = 100 : 36 100 · P = 2,25 · 36 → This matter has remained dry, and refers to the 54% tree $P = \frac{2,25 \cdot 36}{100}$ P = 0,81tons G : P = 100 : p G : 0,81 = 100 : 54 G · 54 = 0,81 · 100 G = $\frac{0,81 \cdot 100}{54}$ G = 1,5tons

So now that tree has 1.5 tons and decrease 2,25-1,5 = 0.75 tons