Percent account

$\mathbf{G}: \mathbf{P}=\mathbf{1 0 0}: \mathbf{p} \quad$ What is what in proportions?
G - is a principal, (whole), what is "at the beginning" and it always refers 100%.
P - is part of the principal (whole), what is "at the end"and it applies to $p \%$.
Of course, sometimes P can be greater than G.
p - is always a percentage
In the task, we first determine what is specified: G, P or p. This data we put in $\mathbf{G}: \mathbf{P}=\mathbf{1 0 0 : p}$ and find unknown.

Examples:

1) Thirty percent of a length is $\mathbf{4 2}$. How long the entire length is?

$$
\begin{aligned}
& G: P=100: p \\
& G: 42=100: 30 \\
& 30 G=42 \cdot 100 \\
& G=\frac{42 \cdot 100}{30} \\
& G=140
\end{aligned}
$$

2) Price of shoe is $\mathbf{2 . 7 0 0 \$}$? How much will it be after the price decrease of $\mathbf{1 5 \%}$?

$$
\begin{array}{ll}
G: P=100: p & \text { Discount 15\%, } \quad p=\mathbf{1 0 0} \mathbf{- 1 5}=\mathbf{8 5 \%} \\
2.700: P=100: 85 \\
P \cdot 100=2.700 \cdot 85 \\
P=\frac{2.700 \cdot 85}{100} & \\
P=2.295 \$ &
\end{array}
$$

3) Price of book is cut for $\mathbf{1 0 \%}$ and $\mathbf{2 0 \%}$, and now amounts to $288 \$$. What the price was before the first decrease?

First, you can find the cost of books before second decrease. (back)
$G: P=100: p$
$G: 288=100: 80$
$80 \cdot G=288 \cdot 100$
$G=\frac{288 \cdot 100}{80}$
$G=360 \$$

Now require home price:
$G: P=100: p$
$G: 360=100: 90$
$90 \cdot G=360 \cdot 100$
$G=\frac{360 \cdot 100}{90}$
$G=400 \$$
4) With $\mathbf{6 \%}$ of the earnings of goods sold for $\mathbf{1} 272000$ \$. What is the cost of goods?
$G: P=100: p$
$G: 1.272 .000=100: 106$
$G \cdot 106=1.272 .000 \cdot 100$

$$
p=100+6=106 \%
$$

$G=\frac{127.200 .000}{106}$
$G=1.200 .000$
5) Award worker per hour of $6500 \$$ grow to $7020 \$$. How much is it in percentage?
$G: P=100: p$
$\mathrm{P}=7.020-6.500$
$6.500: 520=100: p$
$\mathrm{P}=520$
$6.500 \cdot p=520 \cdot 100$
$p=\frac{520 \cdot 100}{6.500}$
$p=8 \%$
6) At the written exercises were given three tasks.
$\mathbf{1 2 \%}$ of students not solve a single task, $\mathbf{3 2 \%}$ of students solve one or two tasks, while 14 students solve all three tasks. How much is the total student work training?
\mathbf{x} - number of students
$12 \% \mathrm{x}+32 \% \mathrm{x}+14=100 \% \mathrm{x}$

$$
\frac{12}{100} x+\frac{32}{100} x+14=x
$$

$$
100 \%=\frac{100}{100}=1
$$

$$
\begin{aligned}
12 x+32 x+1400 & =100 x \\
12 x+32 x-100 x & =-1400 \\
-56 x & =-1400 \\
x & =\frac{-1.400}{-56} \\
x & =25
\end{aligned}
$$

7) Only brought down tree was difficult to contain 2.25 tons and $\mathbf{6 4 \%}$ is water. After a week treecontained 46% water. How much has changed weight tree for the week?

fallen tree

36% dry matter	64% water

2,25 tons

Dry tree

First, we calculate how much is in the 2.25 tons of dry matter that does not change!
$G: P=100: p$
$2,25: P=100: 36$
$100 \cdot P=2,25 \cdot 36 \rightarrow$ This matter has remained dry, and refers to the $\mathbf{5 4 \%}$ tree
$P=\frac{2,25 \cdot 36}{100}$
$P=0,81$ tons
$G: P=100: p$
$G: 0,81=100: 54$
$G \cdot 54=0,81 \cdot 100$
$G=\frac{0,81 \cdot 100}{54}$
$G=1,5$ tons
So now that tree has 1.5 tons and decrease $2,25-1,5=0.75$ tons

